博客
关于我
Deep Learning---caffe模型参数量(weights)计算
阅读量:78 次
发布时间:2019-02-25

本文共 1173 字,大约阅读时间需要 3 分钟。

Draw_convnet

这里写图片描述

这幅图是通过开源的工具draw_convnet()生成的。在清楚整个前向计算网络中的每一个层的输入输出以及参数设置后可以自己手动画出计算图出来,对于参数量计算就很直观了。

feature map大小计算

输入:N0*C0*H0*W0 输出:N1*C1*H1*W1 输出的feature map大小: H1=(H0+2×pad−kernel_size) / stride+1 W1=(W0+2×pad−kernel_size) / stride+1 当输入的H0 == W0时,公式可以简化为:H1=W1=(h + 2xpad - kernel_size) / stride + 1注:当stride为1时,若pad=(kernel_size−1)  / 2,那么经过计算后的feature map大小不变

以LeNet-5为例

下面是一个多通道图像的输入LeNet-5网络前向计算模拟图:

LeNet-5

  • 网状立体格子表示kernel,其他颜色方图表示feature map(Input表示输入层,可以看做特殊的feature map)
  • 一个kernel对应一个feature map
  • 参数量主要为kernel大小
  • 每个kernel带一个bias

整个网络占据权重的为Convolution/Innerproduct 两层,分别计算参数量为,:

C1: 5 x 5 x 20 =  500,5x5卷积核, 20个feature map输出,20个kernelC2: 20x 5 x 5 x 50 = 25000 ,20维度输入,则20x5x5 kernel,50个feature map输出,即相当于20通道的图像输入,则需要20x5x5的kernel来卷积乘,50个这样的卷积核操作得到50个feature map,50个kernelF1: 50x4x4x500 = 400000,50维度特征图输入,全连接,每个点做卷积乘,则kernel大小为50x4x4,共500个feature map输出,500个kernelF2 : 500x1x1x10 = 5000,500维度特征图输入,全连接,kernel大小为500x1x1,共10个feature map输出,10个kernel

用4bytes的float类型来存储参数,则总的参数量大小为:

500 + 25000 + 400000 + 5000 + (20 + 50 + 500 + 10) =  431080

字节数为:

431080 x 4 = 1724320 ≈ 1683.90625kb ≈ 1.64M

对比实际LeNet-5网络基于caffe训练出来的模型大小为:1.64 MB (1,725,025 字节),基本接近,因为模型中可能还带有附加特性参数。

参考资料:

你可能感兴趣的文章
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:从头开始的文本矢量化方法
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
NLTK - 停用词下载
查看>>
nmap 使用总结
查看>>
nmap 使用方法详细介绍
查看>>
nmap使用
查看>>
nmap使用实战(附nmap安装包)
查看>>
Nmap哪些想不到的姿势
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
nmap指纹识别要点以及又快又准之方法
查看>>
Nmap渗透测试指南之指纹识别与探测、伺机而动
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>